Start

Chapter 2

Do This: Review all of the other
movement commands listed above and
try them out on your Scribbler. Again,
note the behavior of the robot from each
of these commands. In doing this
activity, you may find yourself
repeatedly entering the same commands
(or simple variations). IDLE provides a
convenient way to repeat previous
commands (see the Tip in the box on the
right).

I)_!Ell;neg New Commands

Trying out simple commands
interactively in (BIBB)is a nice way to get
to know your robot's basic features. We

This meanswill continue to use this each time we

the shell.

want to try out something new. However,
making a robot carry out more complex
behaviors requires several series of

IDLE Tip

You can repeat a previous command
by using IDLE's command history
feature:

ALT-p retrieves previous command
ALT-n retrieves next
(Use CTRL-p and CTRL-n on MACs)

Pressing ALT-p again will give the
previous command from that one and
so on. You can also move forward in
the command history by pressing ALT-
n repeatedly. You can also click your
cursor on any previous command and
press ALT-ENTER to repeat that
command.

commands. Having to type these over and over interactively while the robot is
operating can get tedious. Python provides a convenient way to package a series
of commands into a brand new command called a function. For example, if we
wanted the Scribbler to move forward and then move backward (like a yoyo), we
can define a new command (function) called §8§®as follows:

>>> def yoyo():
forward (1)
backward (1)
stop ()

You make this name up.

The first line defines the name of the new command/function to be yoyo. The
lines that follow are slightly indented and contain the commands that make up
the yoyo behavior. That is, to act like a yoyo, move forward and then backward
and then stop. The indentation is important and is part of the Python syntax. It
ensures that all indented commands are part of the definition of the new
command. We will have more to say about this later.

Once the new command has been defined, you can try it by entering the

command into IDLE as shown below:

>>> yoyo ()

22

Personal Robots

Do This: If you have your Scribbler ready, go ahead and try out the new
definition above by first connecting to the robot, and then entering the definition

above. You will notice that @s'soon‘as‘you type the firstline, IDLE automatically
indents'the nextline(s). After entering the last line hit an extra RETURN to end the

definition. This defines the new command in Python.

You have to indent the first time anc
then it will automatically indent.

Observe the robot's behavior when you give it the yoyo () command. You may
need to repeat the command several times. The robot momentarily moves and
then stops. If you look closely, you will notice that it does move forward and

backwards.

In Python, you can define new functions
by using the def syntax as shown
above. Note also that defining a new
function doesn't mean that the
commands that make up the function
get carried out. You have to explicitly
issue the command to do this. This is
useful because it gives you the ability to
use the function over and over again (as
you did above). Issuing the new
function like this in Python is called,
invocation. Upon invocation, all the
commands that make up the function's
definition are executed in the sequence
in which they are listed in the definition.

How can we make the robot's yoyo
behavior more pronounced? That is,
make it move forward for, say 1 second,
and then backwards for 1 second, and
then stop? You can use the SECONDS
option in forward and backward
movement commands as shown below:

>>> def yoyol():
forward (1, 1)
backward(l, 1)
stop ()

And now for something completely
different

DVD Cover, from http://Wikipedia.com

Calico

{BLE is the name of the editing and
Python shell program. When you
double-click Start Python you are
really starting up BLE: Python is the
name of the language that we will be
using, and gets its name from Monty
Python's Flying Circus. IDLE supposedly
stands for Interactive DeveLopment
Environment, but do you know to
whom else it might be homage?

23

Chapter 2 e e

The same behavior can also be
accomplished by using the command,
wait which is used as shown below:

Remember that your Scribbler runs on
batteries and with time they will get
drained. When the batteries start to
run low, the Scribbler may exhibit

wait (SECONDS)

where sEconDs specifies the amount o
time the robot waits before moving onto
the next command. In effect, the robot
continues to do whatever it had been
asked to do just prior to the wait
command for the amount of time
specified in the wait command. That is, if
the robot was asked to move forward and
then asked to wait for 1 second, it will move forward for 1 second before
applying the command that follows the wait. Here is the complete definition of
yoyo that uses the wait command:

erratic movements. Eventually it stops

responding. When the batteries start
to run low, the Scribbler's red LED light
starts to blink. This is your signal to

replace the batteries.

>>> def yoyo():
forward (1)
wait (1)
backward (1)
wait (1)
stop ()

Do This: Go ahead and try out the new definitions exactly as above and issue the
command to the scribbler. What do you observe? In both cases you should see
the robot move forward for 1 second followed by a backward movement for 1
second and then stop.

Adding Parameters to Commands

Take a look at the definition of the yoyo function above and you will notice the
use of parentheses, (), both when defining the function as well as when using it.
You have also used other functions earlier with parentheses in them and probably
can guess their purpose. Commands or functions can specify certain parameters
(or values) by placing them within parentheses. For example, all of the
movement commands, with the exception of stop have one or more numbers
that you specify to indicate the speed of the movement. The number of seconds
you want the robot to wait can be specified as a parameter in the invocation of
the wait command. Similarly, you could have chosen to specify the speed of the
forward and backward movement in the yoyo command, or the amount of time to

24

Personal Robots

wait. Below, we show three definitions of the yoyo command that make use of

parameters: K

>>> def

>>> def

>>> def

yoyol (speed) :

forward (speed, 1) This works like a variable.Whatever
backward (speed, 1) you define as "speed" the first time will
yoyo? (waitTime) : remain the same value for all "speed"s
forward(l, waitTime) in the function.

backward(l, waitTime) . " R " -

The same is true for "waitTime" in the
yoyo3(speed, waitTime) :
forward (speed, waitTime) Other examples'
backward, waitTime)

In the first definition, yoyo1, we specify the speed of the forward or backward
movement as a parameter. Using this definition, you can control the speed of
movement with each invocation. For example, if you wanted to move at half
speed, you can issue the command:

>>> yoyol (0.5)

Similarly, in the definition of yoyo2 we have parameterized the wait time. In the
last case, we have parameterized both speed and wait time. For example, if we
wanted the robot to move at half speed and for 1 %2 seconds each time, we would
use the command:

>>> yoyo3(0.5, 1.5)

This way, we can customize individual commands with different values resulting
in different variations on the yoyo behavior. Notice in all of the definitions above
that we did not have to use the stop () command at all. Why?

Saving New Commands in Modules

As you can imagine, while working with different behaviors for the robot, you
are likely to end up with a large collection of new functions. It would make sense
then that you do not have to type in the definitions over and over again. Python
enables you to define new functions and store them in files in a folder on your
computer. Each such file is called a module and can then be easily used over and
over again. Let us illustrate this by defining two behaviors: a parameterized yoyo
behavior and a wiggle behavior that makes the robot wiggle left and right. The
two definitions are given below:

25

Chapter 2

File: moves.py
Purpose: Two useful robot commands to try out as a module.

First import myro and connect to the robot

from myro import *
init ()

Define the new functions...

def yoyo (speed, waitTime) :
forward (speed)
walt (waitTime)
backward (speed)
wait (waitTime)
stop ()

def wiggle (speed, waitTime) :
rotate (-speed)
wait (waitTime)
rotate (speed)
wailt (waitTime) . .
stop () This svﬂmbol is called

a ’/POU\Y\A" S‘Sn

All lines beginning with a '#' sign are called comments. These are simply —
annotations that help us understand and document the programs in Python. You y
can place these comments anywhere, including right after a command. The@/’/ shitt +3
sign clearly marks the beginning of the comment and anything following it on

that line is not interpreted as a command by the computer. This is quite useful

and we will make liberal use of comments in all our programs.

Notice that we have added the import and the init commands at the top. The
init command will always prompt you to enter the com-port number.

Do This: To store the yoyo and wiggle behaviors as a module in a file, you can
ask IDLE for a New window from the File menu. Next enter the text containing
the two definitions and then save them in a file (let’s call it moves.py) in your
Myro folder (same place you have the start Python icon). All Python modules
end with the filename extension .py and you should make sure they are always
saved in the same folder as the start Python.pyw file. This will make it easy
for you as well as IDLE to locate your modules when you use them.

Once you have created the file, there are two ways you can use it. In IDLE, just
enter the command:

>>> from moves import *

26

Personal Robots

and then try out any of the two commands. For example, the following shows
how to use the yoyo function after importing the moves module:

e I - oo e
File Edit Shell Debug Options Windows Help
Python 2.4.4 (#71, Oct 18 2006, 08:34:43) [MSC v.1310 32 bit (Intel)] on win32 =
Type "copyright™, "credits" or "license ()" for more information.

o i e o b i i S e el o e e ol e e e e e e el e e e e e e ol e e e el o e e ol e e S e e e el o e e

Personal firewall software may warn about the connection IDLE
makes to its subprocess using this computer's internal loopback
interface. This connection is not visible on any external

interface and no data is sent to or received from the Internet.
e e e e o e e e e e e e e e e i e e e e o e i

IDLE 1.1.4
»>»> from moves import *
|| (c) 2006-2007 Institute for Personal Robots in Education

Myro version 2.9.1 is ready!

You are using fluke firmware 2.9.1

You are using scribbler firmware 1.0.2
Hello, I'm RedRover!

>>> yoyo (0.5, 0.5)

>>> |

‘[See http://www.roboteducation.org/ for more information]

As you can see from above, accessing the commands defined in a module is
similar to accessing the capabilities of the myro module. This is a nice feature of
Python. In Python, you are encouraged to extend the capabilities of any system
by defining your own functions, storing them in modules and then using them by
importing them. Thus importing from the moves module is no different that
importing from the myro module. In general, the Python import command has
two features that it specifies: the module name; and what is being imported from
it. The precise syntax is described below:

from <MODULE NAME> import <SOMETHING>

where <MODULE NaME> is the name of the module you are importing from, and
<SOMETHING> specifies the commands/capabilities you are importing. By
specifying a * for <SOMETHING> you are importing everything defined in the
module. We will return to this a little later in the course. But at the moment,
realize that by saying:

from myro import *

you are importing everything defined in the myro module. Everything defined in
this module is listed and documented in the Myro Reference Manual. This also
enables you to define your own set of commands that extend the basic commands

%N O_,_E: You can alse Compile gpur definiHons JirecH

 ther J
rom their file (press +h reen EU\'H'OY\> and +hen +est 27
f‘r\im oaff—l'j\n’l:‘-kh{(f shen.ﬁg wjtj- lam con Fine Hane Your Lunction

\hefore Creating a module,

Chapter 2

available in Myro in order to customize the behavior of your robot. We will be
making use of this over and over again in this course.

Functions as Building Blocks

Now that you have learned how to define new commands using existing ones, it
1s time to discuss a little more Python. The basic syntax for defining a Python
function takes the form:

def <FUNCTION NAME> (<PARAMETERS>) :
<SOMETHING>

<SOMETHING>

That is, to define a new function, start by using the word de £ followed by the
name of the function (<FucTION NAME>) followed by <PARAMETERS> enclosed in
parenthesis followed by a colon (:). This line is followed by the commands that
make up the function definition (<SOMETHING>. . .<SOMETHING>). Each

command is to be placed on a separate line, and all lines that make up the
definition should be indented (aligned) the same amount. The (BCHONSPAGES

This may seem a bit awkward and too restricting at first, but you will soon see
the value of it. First, it makes the definition(s) more readable. For example, look
at the following definitions for the yoyo function:

def yoyo (speed, waitTime) :
forward (speed)
wait (waitTime) </J‘ J[
backward (speed)

walt (waitTime)
stop ()

def yoyo (speed, waitTime) : O{
forward (speed); wait (waitTime) <’—/—' Gl O O
backward (speed); wait (waitTime)

stop ()

The first definition will not be accepted by Python, as shown below:

28

[n Calico, the red
error report wil
print out which |
line of code needs
to be fixed.

Personal Robots

= voyo (speed, waitTike) :
forward (speed)
wait (waitTime)
bhackuward (speed)
wait (waitTime)
stop ()

pcause the spaCes and
Eid€n+h+ﬂ0ﬂ MJer‘E’ﬁ;oﬂ‘ Hne fﬂﬂnneﬂ

SyntaxError: invalid syntax
o5 |

It reports that there 1s a syntax error and it highlights the error location by placing
the thick red cursor (see the third line of the definition). This is because Python
strictly enforces the indentation rule described above. The second definition,
however, is acceptable. For two reasons: indentation is consistent; and
commands on the same line can be entered separated by a semi-colon (;). We
would recommend that you continue to enter each command on a separate line
and defer from using the semi-colon as a separator until you are more
comfortable with Python. More importantly, you will notice that IDLE helps you
in making your indentations consistent by automatically indenting the next line,
if needed.

Another feature built into IDLE that enables readability of Python programs is
the use of color highlighting. Notice in the above examples (where we use screen
shots from IDLE) that pieces of your program appear in different colors. For
example, the word def in a function definition appears in red, the name of your
function, yoyo appears in blue. Other colors are also used in different situations,
look out for them. IDLE displays all Python words (like def) in red and all
names defined by you (like yoyo) in blue.

The idea of defining new functions by using existing functions is very powerful
and central to computing. By defining the function yoyo as a new function using
the existing functions (forward, backward, wait, stop))you have
abstracted a new behavior for your robot. You can define further higher-level
functions that use yoyo if you want. Thus, functions serve as basic building
blocks in defining various robot behaviors, much like the idea of using building
blocks to build bigger structures. As an example, consider defining a new
behavior for your robot: one that makes it behave like a yoyo twice, followed by
wiggling twice. You can do this by defining a new function as follows:

>>> def dance() :
yoyo (0.5, 0.
yoyo (0.5, 0.
wiggle (0.5,
wiggle (0.5,

= = 01O

>>> dance ()

29

Chapter 2

Do This: Go ahead and add the dance function to your moves.py module. Try
the dance command on the robot. Now you have a very simple behavior that
makes the robot do a little shuffle dance.

Guided by Automated Controls

Earlier we agreed that a robot is a “mechanism guided by automated controls™.
You can see that by defining functions that carry out more complex movements,
you can create modules for many different kinds of behaviors. The modules
make up the programs you write, and when they are invoked on the robot, the
robot carries out the specified behavior. This is the beginning of being able to
define automated controls for a robot. As you learn more about the robot’s
capabilities and how to access them via functions, you can design and define
many kinds of automated behaviors.

Summary

In this chapter, you have learned several commands that make a robot move in
different ways. You also learned how to define new commands by defining new
Python functions. Functions serve as basic building blocks in computing and
defining new and more complex robot behaviors. Python has specific syntax
rules for writing definitions. You also learned how to save all your function
definitions in a file and then using them as a module by importing from it. While
you have learned some very simple robot commands, you have also learned some
important concepts in computing that enable the building of more complex
behaviors. While the concepts themselves are simple enough, they represent a
very powerful and fundamental mechanism employed in almost all software
development. In later chapters, we will provide more details about writing
functions and also how to structure parameters that customize individual function
invocations. Make sure you do some or all of the exercises in this chapter to
review these concepts.

30

Perso

Comiands wou have !mlrm U9

| ==

STTEIr i

Myro Review

backward (SPEED)
Move backwards at spEED (value in the range -1.0...1.0).

backward (SPEED, SECONDS)
Move backwards at spPEED (value in the range -1.0...1.0) for a time given in
SECONDS, then stop.

forward (SPEED)
Move forward at spEED (value in the range -1.0..1.0).

forward (SPEED, TIME)
Move forward at spEED (value in the range -1.0...1.0) for a time given in
seconds, then stop.

motors (LEFT, RIGHT)

Turn the left motor at LEFT speed and right motor at RIGHT speed (value in the
range -1.0...1.0).

move (TRANSLATE, ROTATE)
Move at the TRANSLATE and ROTATE speeds (value in the range -1.0...1.0).

rotate (SPEED)
Rotates at spEED (value in the range -1.0...1.0). Negative values rotate right
(clockwise) and positive values rotate left (counter-clockwise).

stop ()
Stops the robot.

translate (SPEED)
Move in a straight line at sPEED (value in the range -1.0...1.0). Negative values
specify backward movement and positive values specify forward movement.

turnLeft (SPEED)
Turn left at spEED (value in the range -1.0...1.0)

turnLeft (SPEED, SECONDS)
Turn left at spEED (value in the range -1.0..1.0) for a time given in seconds, then
stops.

turnRight (SPEED)
Turn right at spEED (value in the range -1.0..1.0)

31

Chapter 2

turnRight (SPEED, SECONDS)
Turn right at spPEED (value in the range -1.0..1.0) for a time given in seconds,
then stops.

wait (TIME)
Pause for the given amount of TTME seconds. TTME can be a decimal number.

Python Review

def <FUNCTION NAME> (<PARAMETERS>) :
<SOMETHING>

<SOMETHING>
Defines a new function named <runcTION NAME>. A function name should
always begin with a letter and can be followed by any sequence of letters,
numbers, or underscores (_), and not contain any spaces. Try to choose names
that appropriately describe the function being defined.
Complete the following e xercises.

_Exercises T+ is nol necessary fo record wur answers.

1. Compare the robot's movements in the commands turnLeft (1),
turnRight (1) and rotate (1) and rotate (-1). Closely observe the robot's
behavior and then also try the motor commands:

>>> motors(-0.5, 0.5)
>>> motors (0.5, -0.5
>>> motors (0, 0.5)
>>> motors (0.5, 0)

Do you notice any difference in the turning behaviors? The rotate commands
make the robot turn with a radius equivalent to the width of the robot (distance
between the two left and right wheels). The turn command causes the robot to
spin in the same place.

2. Insert a pen in the scribbler's pen port and then issue it command to go
forward for 1 or more seconds and then backwards for the same amount. Does
the robot travel the same distance? Does it traverse the same trajectory? Record
your observations.

3. Measure the length of the line drawn by the robot in Exercise 2. Write a
function travel (DISTANCE) to make the robot travel the given DISTANCE.
You may use inches or centimeters as your units. Test the function on the robot a
few times to see how accurate the line is.

32

Personal Robots

A behavior is a
set of functions.

5. Generalize the wait time obtained in Exercise 3 and write a function called
degreeTurn(DEGREES). Each time it is called, it will make the robot turn the
specified degrees. Use this function to write a set of instructions to draw a
square.

6. Using the functions travel and degreeTurn, write a function to draw the
Bluetooth logo (See Chapter 1, Exercise 9).

7. Choreograph a simple dance routine for your robot and define functions to
carry it out. Make sure you divide the tasks into re-usable moves and as much as
possible parameterize the moves so they can be used in customized ways in
different steps. Use the building block idea to build more and more complex
series of dance moves. Make sure the routine lasts for at least several seconds
and it includes at least two repetitions of the entire sequence. You may also make
use of the beep command you learned from the last section to incorporate some
sounds in your choreography.

8. Record a video of your robot dance and then dub it with a soundtrack of your
choosing. Use whatever video editing software accessible to you. Post the video
online on sites like YouTube to share with friends.

9. Lawn mower robots and even vacuuming robots can use specific
choreographed movements to ensure that they provide full coverage of the area
to be serviced. Assuming that the area to be mowed or cleaned is rectangular and
without any obstructions, can you design a behavior for your Scribbler to provide
full coverage of the area? Describe it in writing. [Hint: Think about how you
would mow/vacuum yourself.]

33

